Automated method for extracting response latencies of subject vocalizations in event-related fMRI experiments.
نویسندگان
چکیده
For functional magnetic resonance imaging studies of the neural substrates of language, the ability to have subjects performing overt verbal responses while in the scanner environment is important for several reasons. Most directly, overt responses allow the investigator to measure the accuracy and reaction time of the behavior. One problem, however, is that magnetic resonance gradient noise obscures the audio recordings made of voice responses, making it difficult to discern subject responses and to calculate reaction times. ASSERT (Adaptive Spectral Subtraction for Extracting Response Times), an algorithm for removing MR gradient noise from audio recordings of subject responses, is described here. The signal processing improves intelligibility of the responses and also allows automated extraction of reaction times. The ASSERT-derived response times were comparable to manually measured times with a mean difference of -8.75 ms (standard deviation of difference = 26.2 ms). These results support the use of ASSERT for the purpose of extracting response latencies and scoring overt verbal responses.
منابع مشابه
A weighted least-squares algorithm for estimation and visualization of relative latencies in event-related functional MRI.
The properties of the hemodynamic latencies in functional maps have been relatively unexplored. Accurate methods of estimating hemodynamic latencies are needed to take advantage of this feature of fMRI. A fully automated, weighted least-squares (WLS) method for estimating temporal latencies is reported. Using a weighted linear model, the optimal latency and amplitude of the fMRI response can be...
متن کاملEvaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملHemodynamic Response Latency Analysis Using Wavelet Transform in Event-related Functional MRI
Many studies showed that the hemodynamic response (HR) to brief neural activity caused by the blood oxygen level-dependent effect is delayed some seconds, and that the HR latency (= time to peak from neural activation) varies among activation sites. This paper proposes a novel method for estimating HR latency by analyzing event-related functional magnetic resonance images based on a continuous ...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملModelling the haemodynamic response function
We present a method to extract the haemodynamic response function (HRF) from a functional magnetic resonance imaging (fMRI) time series. The method is based on Fourierwavelet regularised deconvolution (ForWaRD). The extraction algorithm is very general: it relies only on the assumptions of the general linear model (GLM) and the fact that signal and noise can be distinguished in the frequency an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2003